Unit I – Problem 6.7 – Physiology: Body Temperature Regulation and Fever

- **Core temperature vs skin temperature:**
 - **Core temperature:** temperature of deep tissues which is relatively constant (± 1 F under normal conditions).
 - **Skin temperature:** it differs widely because it depends on the temperature of the environment.

- **Normal body temperature:**
 - Normally = 37 C. Notice that extremities are generally cooler than the rest of the body.
 - Rectal temperature represents the core temperature of the body and it is not affected by changes in environment temperature.
 - Morning oral temperature = 36.7 C (± 0.2 C). Oral temperature is (0.5 C) less than rectal temperature and it is affected by many factors:
 - Ingestion of hot or cold fluids.
 - Gum chewing.
 - Smoking.
 - Mouth breathing.
 - The temperature of the scrotum = 32 C (less than normal body temperature because this is more suitable for spermatogenesis: production of sperms).
 - In females, basal temperature rises at time of ovulation (usually day 14 of the menstrual cycle).
 - **Normal body temperature range:**

<table>
<thead>
<tr>
<th>°F</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>24</td>
</tr>
<tr>
<td>76</td>
<td>26</td>
</tr>
<tr>
<td>78</td>
<td>28</td>
</tr>
<tr>
<td>82</td>
<td>28</td>
</tr>
<tr>
<td>86</td>
<td>30</td>
</tr>
<tr>
<td>90</td>
<td>32</td>
</tr>
<tr>
<td>94</td>
<td>34</td>
</tr>
<tr>
<td>98</td>
<td>36</td>
</tr>
<tr>
<td>102</td>
<td>38</td>
</tr>
<tr>
<td>106</td>
<td>40</td>
</tr>
<tr>
<td>110</td>
<td>42</td>
</tr>
<tr>
<td>114</td>
<td>44</td>
</tr>
</tbody>
</table>

- Upper limit of survival?
- Heatstroke
- Brain lesions
- Fever therapy
- Febrile disease and hard exercise
- Usual range of normal
- Lower limit of survival?
- Rate of heat production by a normal 70 kg person can vary from 75-80 kcal/hour when sitting to more than 1400 kcal/hour at maximum rates of exercise.

- **Thermoregulation:**
 - The body has well developed mechanisms for balancing heat production with heat loss.

<table>
<thead>
<tr>
<th>Heat production</th>
<th>Heat loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscular activity</td>
<td>Radiation</td>
</tr>
<tr>
<td>Basic metabolic processes</td>
<td>Conduction and convection</td>
</tr>
<tr>
<td>Food intake</td>
<td>Evaporation of sweat</td>
</tr>
<tr>
<td></td>
<td>Respiration</td>
</tr>
<tr>
<td></td>
<td>With urine and feces</td>
</tr>
</tbody>
</table>
• Physics of heat loss from the body:

From the graph below you will notice that core temperature remains stable despite wide variations in atmospheric temperature.

• How is heat lost from the body when the environmental temperature is greater than the body temperature?
 ✓ When environmental temperature rises, there will be vasodilation which will increase heat conductance through the skin.
 ✓ Sweating:
 √ Sweat glands are innervated by acetylcholine-secreting sympathetic nerves.
 √ Rate of sweat production varies from 0 to 1.5 L/h
 √ Notice that 1L of water evaporated from the surface of the skin can lead to heat loss of 580 kcal.
 √ Sweat gland:
 ➢ Primary secretion: mainly protein-free filtrate.
 ➢ In the ducts there will be absorption of sodium and chloride ions from the primary secretion.

<table>
<thead>
<tr>
<th>Temperature decreasing mechanisms</th>
<th>Temperature increasing mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vasodilation: transfers heat to the skin</td>
<td>Vasoconstriction</td>
</tr>
<tr>
<td>Sweating: evaporative heat loss</td>
<td>Piloerection: usually not important in humans</td>
</tr>
<tr>
<td>Decreased heat production: shivering and chemical thermogenesis are inhibited</td>
<td>Increased heat production: shivering; sympathetic excitation of heat production; thyroxine secretion</td>
</tr>
</tbody>
</table>
How is body temperature detected?
- **Hypothalamus temperature control center:**
 - Preoptic area of anterior hypothalamus.
 - Heat sensitive and cold sensitive neurons.
- **Skin and deep body temperature receptors:**
 - Mainly detecting cool temperatures.
 - Function to prevent hypothermia.
- **Role of posterior hypothalamus:**
 - Receives input from anterior hypothalamus and peripheral temperature receptors to elicit mainly heat producing and heat conserving reactions.

Response to cold environment:
- Increase in sympathetic activity:
 - Stimulates chemical thermogenesis (NE and E → ↑metabolic rate).
 - Initiates piloerection.
 - Shivering thermogenesis.
- Notice that long-term cold exposure stimulates hypothalamus to produce more Thyroid Releasing Hormone (TRH).

Response to hot environment:
- Vasodilation of cutaneous circulation.
- Sweating: regulates sensible evaporative heat loss; critical for cooling in environment hotter than body.
- Decreased heat production.

- **Fever: resetting the set-point T^0**
 - Pyrogens (bacteria and degenerating tissues) can directly reset set-point.
 - Pyrogens can indirectly reset set-point:
 - Interleukin-1 (IL-1) released from phagocytes following phagocytosis of blood-borne pyrogens.
 - (IL-1) raises set-point by increasing prostaglandin production (mainly E₂).

Pathogenesis of fever:

- Fever-producing stimuli:
 - Gram-negative bacilli
 - Viruses
 - Fungi
 - Endotoxins: Antigen/antibody reactions

- Circulation
 - Macrophage
 - T lymphocyte
 - Immune response: activation of lymphocytes, neutrophils, microphages
 - Acute-phase response
 - Cytokines
 - Liver and metabolic responses
 - Immune response: reticuloendothelial cell systems

- Blood-brain barrier
 - Brain (OVLT: endothelial cells)
 - Release of prostaglandin (PGE₂)
 - Increases T^0
 - Fever
- **Time course of fever:**

- **Heat stroke:**
 - It occurs when body temperature rises above 106-108 F:
 - Malfunction of preoptic temperature control center: sweating ceases.
 - Rising body temperature increases metabolism which generates more heat.
 - Symptoms include:
 - High body temperature: ≥ 40°C
 - Altered mental state or behavior.
 - Alteration in sweating:
 - *Heat stroke brought on by hot weather*: dry skin.
 - *Heat stroke brought on by strenuous exercise*: moist skin.
 - Nausea and vomiting.
 - Flushed skin.
 - Rapid breathing.
 - Racing heart rate.
 - Headache.

- **Heat exhaustion:**
 - Due to circulatory problems:
 - Excessive loss of salt and water due to severe sweating.
 - Heat cramps.
 - Vasodilation.
 - Venous return compromised.
 - Circulatory collapse.
 - Notice that body temperature may not be very high.
 - It is common in elderly, athletes and soldiers when doing heavy exercise in hot environment, persons taking drugs that inhibit sweating and/or vasodilation such as atropine.

- **Acclimatization to heat:**
 - Increased tolerance to hot and humid environment occurs in 5-10 weeks.
 - Physiological changes:
 - ↑ in the maximal rate of sweating.
 - ↓ loss of salt in the sweat and urine.
 - ↑ plasma volume.