- **Human Leukocyte Antigen (HLA) = Major Histocompatibility Complex (MHC)**
 - **What is it?** cluster of genes which are important in:
 ✓ Immune recognition.
 ✓ Signaling between cells of the immune system.
 - **Discovery**: HLA was discovered in 1950s when they found antibodies to leukocytes in the sera of:
 ✓ Multiple-transfused patients.
 ✓ Multi-parous females.
 - **There are two classes of MHC (both presenting on short arm of chromosome 6)**: notice that the mode of inheritance of MHC is haplotype (which means that 50% is inherited from each parent):
MHC class-I	MHC class-II
✓ It is present in all nucleated cells of the body	✓ Antigen-presenting cells (macrophages, B-lymphocytes and dendritic cells).
✓ Sub-classified to: A, B and C	✓ Sub-classified to: D, DR, DQ and DP
✓ Function: cytosol-derived antigen recognition by cytotoxic T-cells (CD8+)	✓ Function: processing vesicle-derived antigen to helper T-cells (CD4+)
 - **Notes:**
 ✓ Each of HLA-A, HLA-B, HLA-C and HLA-DR is a separate genetic locus.
 ✓ The extensive range of HLA antigens which can be expressed by individuals at each of these loci is known as MHC polymorphism.
 ✓ **Homozygous**: refers to the inheritance of two same alleles (from each parent) for the same locus.
 ✓ **Heterozygous**: refers to the inheritance of two different alleles (from each parent) for the same locus.
 - **Organ transplantation rejection**: Cytotoxic T-cells (CD8+) of the recipient recognize foreign MHC class-I antigens of the donor.
 - **Bone marrow transplant rejection = graft versus host disease**: Donor’s T-cells attack recipient’s MHC class-II antigens.
 - **HLA-typing**:
 - **Function**:
 ✓ Paternity testing (فحص الأبوة).
 ✓ Prior to transplantation to select donor.
 ✓ Disease association.
- **Crossmatching:**
 - Potential donor cells (lymphocytes: which express HLA antigens) will be added to serum of the recipient (which might contain anti-HLA antibodies). Then, you will look for the reaction by:
 ✓ Complement-dependent cytotoxicity (CDC).
 ✓ Flow cytometry crossmatch (FCXM) using immunofluorescence (this is an alternative method to CDC). This method has many advantages:
 - Detecting non-complement mediated antibodies.
 - Faster turn around time.
 - Lower incidence of ambiguous results (نتائج غامضة وملتبسة) due to poor cell viability.
 - Direct detection of IgG antibodies, thus avoiding false positive reactions caused by IgM autoantibodies.
 - A negative crossmatching result is required to proceed with the procedure of transplantation.

- **Panel Reactive Antibody Screen (PRA):**
 - Only the recipient is needed to be tested if he has anti-HLA antibodies or not.
 - **Methods:**
 ✓ Complement-dependent cytotoxicity (CDC).
 ✓ ELISA
 ✓ Flow cytometry.

- **HLA-matching: graft survival**
 - **One year graft survival rate is:**
 ✓ 94% in recipient of two haplotype match (HLA identical). Patient lives for 26.9 years!
 ✓ 89% and 90% when one haplotype match parent or sibling. Patient lives for 12.2 years.

- **Generation of allograft rejection response: there are three mechanisms of rejection**
 - Cytotoxic T-cells (CD8+).
 - Delayed type hypersensitivity mediated by helper T-cells (CD4+).
 - Antibodies produced by plasma cells.