- **What is a gene?**
 - A sequence of chromosomal DNA that is required for production of a functional protein (it contains both introns and exons).

- **What is gene therapy?**
 - It is the treatment of human diseases by transferring genetic material into a person’s cell to fight/prevent the disease.

- **Types of gene therapy:**
 - There are two types of gene therapy:
 - **Germ-line Gene Therapy**
 - Targeting gonads, sperm and ova
 - **Somatic Cells Gene Therapy**
 - Ethically unacceptable
 - Transmitted to offspring
 - Targeting cells, tissues and organs in which the disorder is manifested

- **Is gene therapy applied in all diseases?** → no, there are requirements:
 - **Disease:**
 - The disease must be serious.
 - Incurable with conventional treatment.
 - Chronic (requires life-long treatment).
 - **Gene:**
 - The gene responsible for the disease must be identified.
 - Copies of the gene can be made in the lab.
 - Role of protein encoded by the gene is known.
 - **Target organ:**
 - Readily accessible.
 - Long survival time.
 - Ability to replicate itself.
 - **Ethical approval.**

- **Diseases which are targeted by gene therapy:**
 - **Inherited disease with single-gene defect:**
 - Severe Combined Immunodeficiency disease (SCID).
 - Duchenne muscular dystrophy.
 - Hemophilia.
 - β-thalassemia.
 - Cystic fibrosis.
 - **Poly-genic (multiple gene-defects are responsible for the disease) or non-inherited diseases:**
 - Infectious diseases: HIV and hepatitis-C
 - Rheumatoid Arthritis (RA).
 - Cancer (it is the most targeted disease in gene therapy).
 - Cardiovascular diseases.

- **Gene therapy – step by step:**
 - Identify the gene which is responsible for the disease.
 - Make copies of the normal gene.
• Insert the copies into a vector (mostly virus):
 ✓ Remove the viral genome and then insert the gene of interest.
• Infect affected cells with the vector:
 ✓ Normal gene is carried into the nucleus.
 ✓ The DNA may integrate into the genome.
• Activate the gene (transcription & translation take place).
 - There are two approaches of gene delivery:
 • In vivo approach: injection of the vector into the body and specifically target affected cells.
 • Ex vivo approach: delivering the gene to cells while they are outside the body.
• Strategy of gene therapy:
 • Loss of function mutation: insert a copy of normal gene.
 • Gain of function mutation: replace with the normal gene.
• Cancer gene therapy:
 ✓ Stimulation of natural killing of tumor cells (IL-2).
 ✓ Anti-angiogenic genes (inhibiting VEGF).
 ✓ Supply tumor suppressor genes (p53).
 ✓ Inhibition of oncogenic proteins (such as bcr-abl).
 ✓ Transporting anti-cancer genes selectively into cancer cells using nanotechnology (magic bullet!).
• What are the characteristics of an ideal vector?
 • Has an adequate carrying capacity.
 • Easy to produce in high concentrations.
 • Targeting specific tissues.
 • Stable.
 • No immune response, non-inflammatory and non-toxic.
 • High efficiency.
 • Long duration of expression.
• Methods of gene delivery:
 • Transduction: viral-mediated gene transfer.
 • Transfection: non-viral mediated gene transfer.
• Types of vectors:
 • Viral vectors (transduction):
 ✓ Retroviruses: these are RNA viruses encoding for reverse transcriptase enzyme. They are used in ex vivo gene therapy.
 ✓ Advantages:
 ➢ DNA integrated into host genome.
 ➢ Non-immunogenic and non-toxic.
 ✓ Disadvantages:
 ➢ Small insert size.
 ➢ Infect only dividing cells.
 ➢ Risk of insertional mutagenesis which leads to activation of oncogenes.
 ✓ Lentiviruses:
 ✓ Advantages:
 ➢ Infect dividing and non-dividing cells.
 ➢ Easier to culture than retroviruses.
 ✓ Disadvantages:
 ➢ Risk of insertional mutagenesis which leads to activation of oncogenes.
- **Adenoviruses (these are DNA viruses):**
 - **Advantages:**
 - No risk of insertional mutagenesis.
 - Large.
 - Infect dividing and non-dividing cells.
 - **Disadvantages:**
 - Short duration of expression.
 - Immunogenic with high toxicity (might lead to death).

- **Adeno-associated viruses:**
 - **Advantages:**
 - Inserted into chromosome 19.
 - Infect wide variety of cells.
 - Long duration of expression.
 - Low immune response.
 - **Disadvantages:**
 - Carry small insert size.

- **Herpes virus:**
 - **Advantages:**
 - Infects nervous tissue.
 - **Disadvantages:**
 - Neurotoxicity.

- **Non-viral vectors (transfection):**
 - **Types:**
 - Liposomes.
 - Direct injection of naked DNA.
 - Receptor-mediated endocytosis.
 - Oligonucleotides.
 - **Advantages:**
 - Carrying large insert size.
 - Targeting specific cells.
 - Non-immunogenic.
 - No risk of insertional mutagenesis.
 - **Disadvantages:**
 - Low efficiency.
 - Transient expression (short-term expression).
 - Degradation of protein-DNA conjugate (by lysosomes of the cell).

- **What are the problems of gene therapy?**
 - Short-lived nature of gene therapy.
 - Immune response to vector.
 - General toxicity of viral vectors.
 - Insertional mutagenesis.
 - Multi-gene disorders are hard to treat because you need to introduce more than one gene.
 - Contamination of germ-line cell.
 - Expensive.

- **Current status of gene therapy:** mostly experimental and has not proven very successful in clinical trials.

- **Gene doping:** non-therapeutic use of cells, genes, genetic elements of or the modulation of gene expression having the capacity to improve athletic performance.